Expertenforum Industriefußböden

Die monolithische Bodenplatte

Der junge Beton bei der Monoplattenherstellung

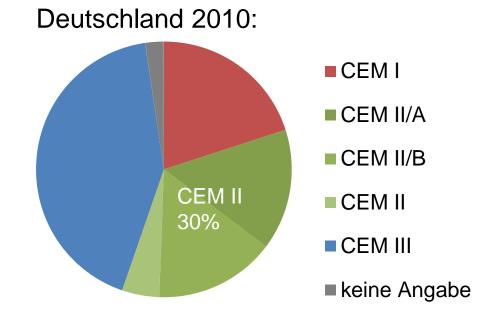
Jürgen Macht

Kirchdorfer Zementwerk Hofmann Ges.m.b.H.

"Junger Beton"

- Betonzusammensetzung Betonsorte
 - Einfluss auf Verbund Hartkornschicht Beton
- Frischbetoneigenschaften
 - Konsistenz
 - Frischbetontemperatur
- Erstarrungsverhalten
 - Glättfenster
 - Randbedingungen

Keine getrennte Betrachtung möglich

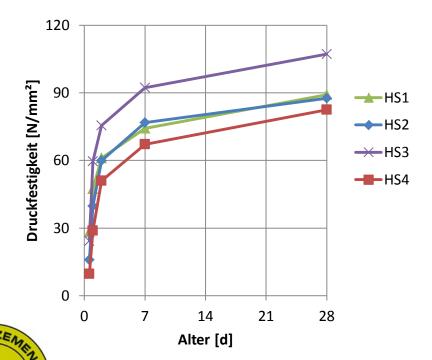

Betonsorte

- "Übliche" Bestellung: C25/30 B2 GK 22 F52
 - Mindestanforderung
- Fließbeton !?
 - nicht deklariert für Hallenboden
- "Nullbeton"
 - ohne FM und ohne Stahlfasern
 - Baustellendosierung
 - Gleichmäßigkeit? und Stabilität der Mische (Entmischung)?
 - − → nicht empfohlen
- Beton nach Zusammensetzung
- Kommunikation wesentlich

Betonzusammensetzung - Zementsorte

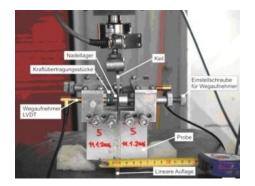
- in Österreich: hauptsächlich CEM II
- oft gefordert: CEM II/A
- in D: 50% CEM II/B von CEM II
- Verträglichkeit
 CEM II/B Hartkorn?

Datenquelle: AiF-Forschungsvorhaben Nr. 16328 N , VDZ



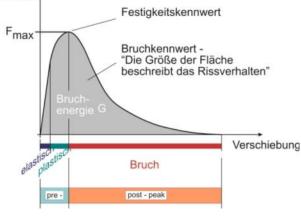
Einfluss Zementsorte auf Verbund Beton - Hartkornschicht

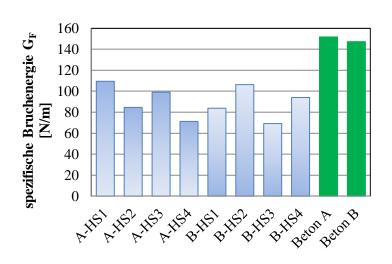
- Betonsorte C25/30 B2 GK16 F52
- 2 Zementsorten
 - CEM II/A-M(S-L) 42,5N
 - CEM II/B-M(S-L) 42,5N
- 4 Hartkorn-Materialien

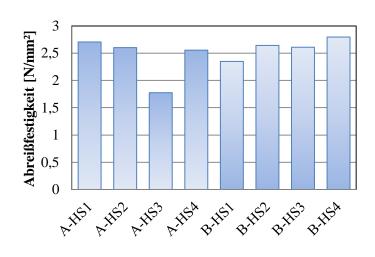

	HS1	HS2	HS3	HS4
2 Tage [MPa]	61,1	59,9	75,5	50,9
Beurteilung	mittel –	mittel –	schnell	mittel
[Travnicek & Stelzer, 2008]	schnell	schnell		

Einfluss Zementsorte auf Verbund Beton - Hartkornschicht

Keilspaltmethode nach Tschegg (ÖNORM B3592:2011)

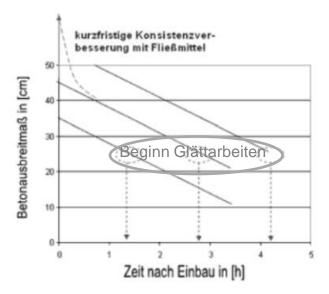


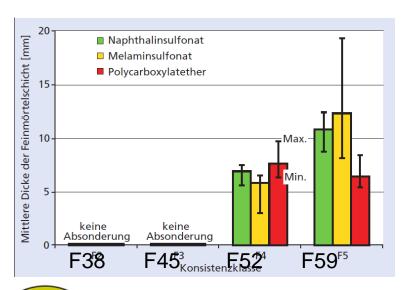

Prüflast 4

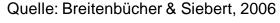


 Bruchenergie zur Beurteilung des Risswiderstandes

Einfluss Zementsorte auf Verbund Beton - Hartkornschicht


- Bruchenergie Verbund < Bruchenergie Material
- Schwachstelle: Übergangszone Hartkornschicht Beton
- kein systematischer Einfluss Zementsorte auf Risswiderstand
- Zementsorten sind gleichwertig


Betonzusammensetzung - Frischbetoneigenschaften


Konsistenz

- für Glättarbeiten ideal: möglichst steif! F45 und steifer
 - verkürzt Zeitspanne bis Beginn des Glättfenstern
 - verringert Entmischungsgefahr

Quelle: Krell, 2007

Betonzusammensetzung -Frischbetoneigenschaften

Konsistenz

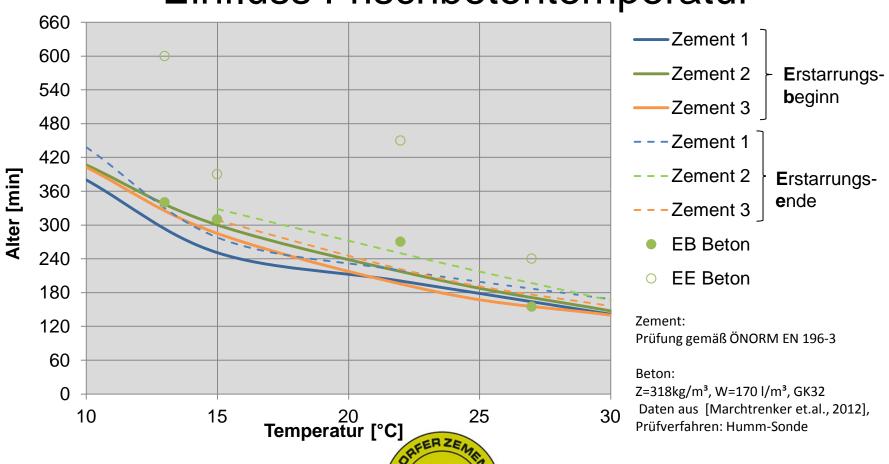
- für Einbau ideal: möglichst weich! F59 und weicher
 - erleichtert die Arbeit
 - reduziert notwendige Verdichtungsenergie

Betonzusammensetzung - Frischbetoneigenschaften

Konsistenz

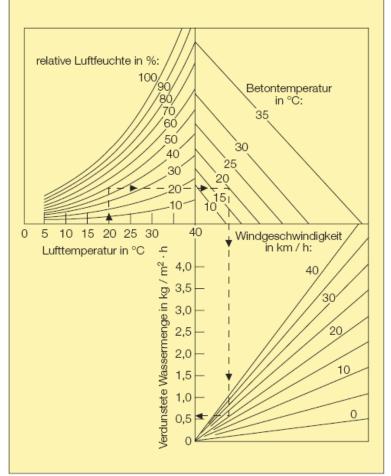
- für Glättarbeiten ideal: möglichst steif! F45 und steifer
 - verkürzt Zeitspanne bis Beginn des Glättfenstern
 - verringert Entmischungsgefahr
- für Einbau ideal: möglichst weich! F59 und weicher
 - · erleichtert die Arbeit
 - reduziert notwendige Verdichtungsenergie
- Kompromiss: weiche, mit geringer Energie verdichtbare Konsistenz (F52)
- Betonzusammensetzung für die tatsächliche Konsistenz
 - Sieblinie
 - Mehlkorngehalt

- möglichst rasches, vor allem gleichmäßiges Erstarren
- So früh wie möglich glätten, aber erst, wenn die Oberfläche mattfeucht und trittfest ist. [Krell, 2007]


- möglichst rasches, vor allem gleichmäßiges Erstarren
- So früh wie möglich glätten, aber erst, wenn die Oberfläche mattfeucht und trittfest ist. [Krell, 2007]
 - → schadfreie Betonoberfläche
- Erfahrung der Glättmannschaft

- Einflüsse
 - Frischbetontemperatur

Erstarrungsverhalten: Einfluss Frischbetontemperatur



- Einflüsse
 - Frischbetontemperatur
 - Randbedingungen

- Einflüsse
 - Frischbetontemperatur
 - Randbedingungen
 - → Zwischennachbehandlung!

- Einflüsse
 - Frischbetontemperatur
 - Randbedingungen
 - → Zwischennachbehandlung!

Schlussbemerkungen

- CEM II/B Zemente gleichwertig zu CEM II/A
- Gemeinsames Gewerk Hersteller und Transportbetonwerk → Kommunikation
- Glättfenster
 - Konsistenz (F52!)
 - Temperatur (Frischbeton-, Umgebungs-)
 - Zwischennachbehandlung

