

CO<sub>2</sub>-reduzierte Zemente und Betone in Anwendung und Theorie

#### Klinkerreduzierter Zement im Tunnelbau

**Christoph Stotter** 

Wietersdorf Alpacem GmbH







Alpacem



#### VÖZ KOLLOQUIUM

# Klinkerreduzierter Zement im Tunnelbau

Wien, 12.11.2025

Dr. Christoph Stotter





### Bahnstrecke Divača-Koper (Second Track)

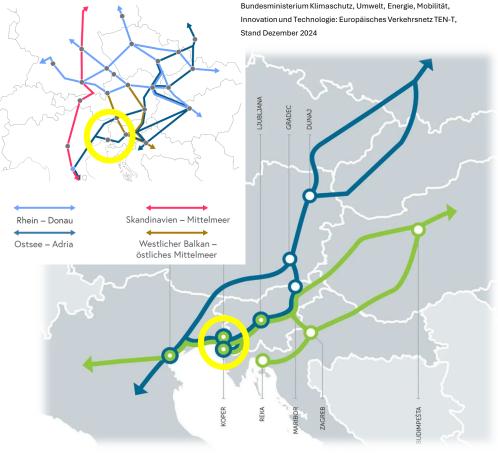
- 27,1 km
- Bauzeit: 2021-2024
- Anwendung klinkerreduzierterZemente
- Einsatz von Tunnelausbruch

- Zement: Alpacem Cement,d.d., Slowenien
- Beton: Alpacem Beton, d.o.o.,Slowenien



### Lage des Projekts

Der Abschnitt der Strecke **Divača-Koper** ist integraler Bestandteil des paneuropä-ischen Verkehrsnetzes (TEN-T-Netze).




https://drugitir.si/en/why-the-second-track

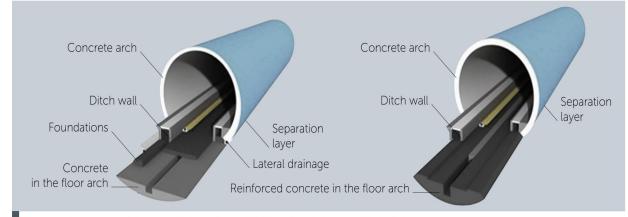
#### Europäische Verkehrskorridore

Als Instrument zur Umsetzung des Kernnetzes wurden 9 Verkehrskorridore (European Transport Corridors) und zwei sogenannten horizontale Prioritäten (ERTMS, Motorways of the Sea) definiert. Derzeit verlaufen 4 dieser Korridore durch Österreich.

Abbildung 1 Europäische Verkehrskorridore in Österreich






#### **Projektdetails**

- Baufirma: Joint venture (Kolektor CPG, Yapi Merkezi, Özaltın)
- Technisches Büro: ELEA iC, IRGO Consulting, SŽ –
  Projektivno podjetje Ljubljana



https://drugitir.si/en/lokev-t1-tunnel

| Projektdaten         |           |  |  |  |
|----------------------|-----------|--|--|--|
| Betonage Innenschale | 2023-2024 |  |  |  |
| Menge CEM II/C       | 20.701 t  |  |  |  |



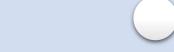
Structural elements of the inner lining - drained (left) and undrained profile (right)



### Der Weg dorthin | Nationale Zulassung in Slowenien

01/2023

Adaptierung des nationalen Betonstandards SIST 1026:2016 – Erlaubt die Verwendung von CEM II/C-M Zementen für die Betonproduktion


08/2021

**Einführung des neuen Zementstandards**SIST EN 197-5:2021

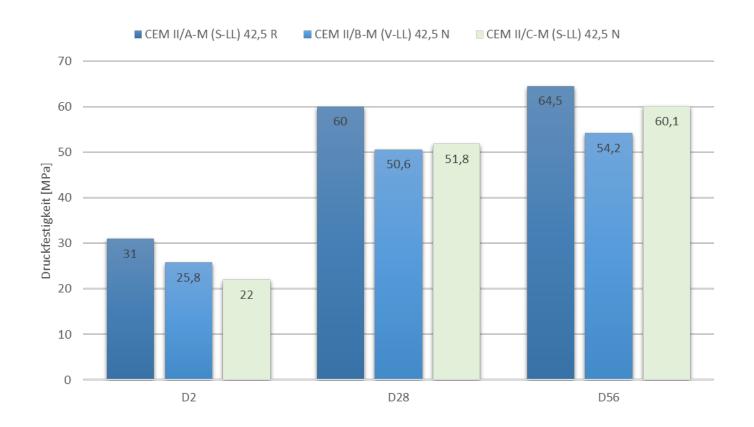


08/2022

Erhalt der Konformitätsbescheinigung für CEM II/C-M (S-LL) 42,5 N durch das slowenische National Building and Civil Engineering Institute (ZAG)



06/2023


Reguläre Betonproduktion mit CEM II/C-M Zement für die Tunnelinnenschale



#### CEM II/C Betonkonzept | Zementperformance

Ergebnisse der Werksdaten der für die Eignungsprüfung herangezogenen Zemente der Alpacem Cement, d.d.

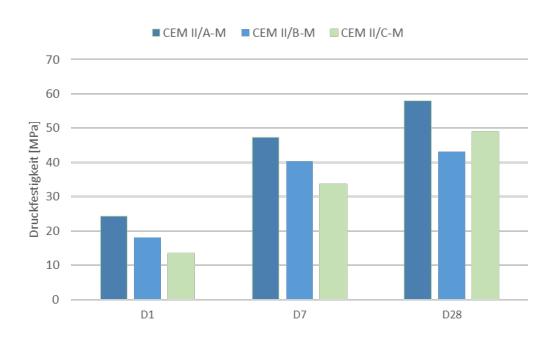
Druckfestigkeit von Zement an Normenprismen gemäß EN 196-1



CEN-Normensand: 1350 g Zementmenge: 450 g

W/B Wert: 0,5




### CEM II/C Betonkonzept | Eignungsprüfung/Betonkonzept

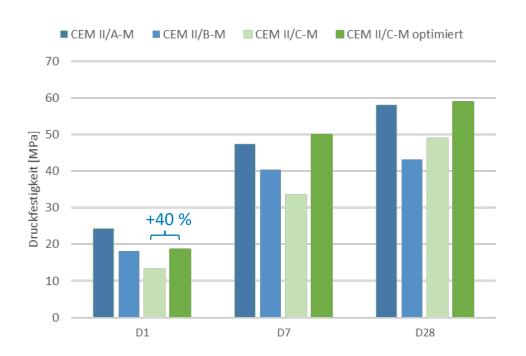
Betonsorte: C30/37 XC4/XD2/XF3/XA1/XS1 CI 0,2 Dmax16

Ziel-Ausbreitmaß **560 mm** 

Anforderung: **10 MPa** (12h - 14h)

|                                     | CEM II/A-M | CEM II/B-M | CEM II/C-M |  |
|-------------------------------------|------------|------------|------------|--|
| Dmax                                | 16         | 16         | 16         |  |
| W/B Wert; Wasser                    | 0,52; 196  | 0,52; 196  | 0,52; 196  |  |
| Luftgehalt                          | 3,0 %      | 4,8 %      | 5,8 %      |  |
| Ausbreitmaß                         | 510 mm     | 545 mm     | 525 mm     |  |
| Druckfestigkeit D1                  | 24,3 MPa   | 18,1 MPa   | 13,3 MPa   |  |
| Druckfestigkeit <sub>D7</sub>       | 47,3 MPa   | 40,4 MPa   | 33,6 MPa   |  |
| <b>Druckfestigkeit</b> D28 58,0 MPa |            | 43,2 MPa   | 49,0 MPa   |  |






## CEM II/C Betonkonzept | Eignungsprüfung/Betonkonzept

Betonsorte: C30/37 XC4/XD2/XF3/XA1/XS1 CI 0,2 Dmax16

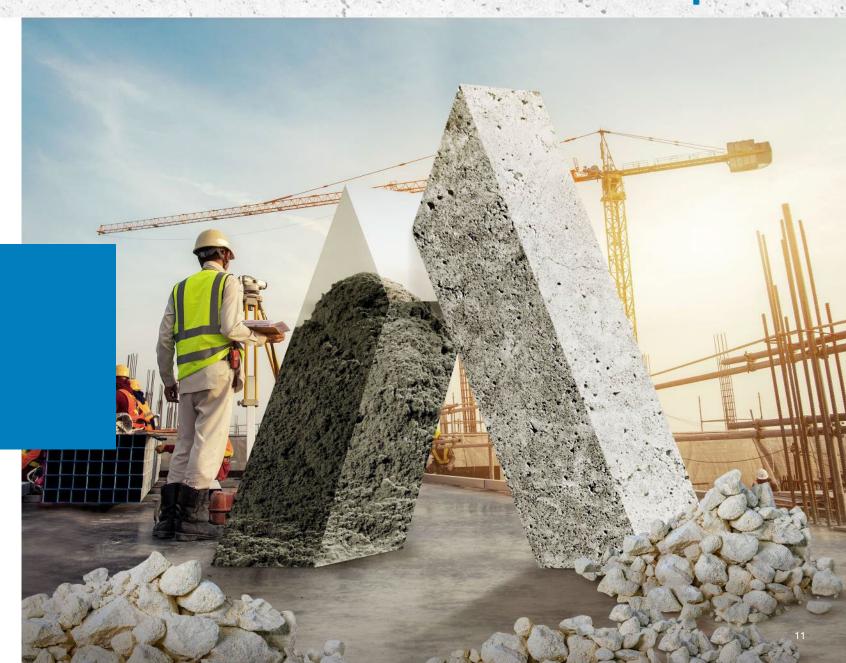
C30/37 XC3/XD2/XF1/XA1 CI 0,2 Dmax16

|                               | CEM II/A-M | CEM II/B-M | CEM II/C-M | CEM II/C-M          |
|-------------------------------|------------|------------|------------|---------------------|
| Dmax                          | 16         | 16         | 16         | 16                  |
| W/B Wert; Liter               | 0,52; 196  | 0,52; 196  | 0,52; 196  | <b>0,46</b> ; 184 l |
| Luftgehalt                    | 3,0        | 4,8        | 5,8        | -                   |
| Ausbreitmaß                   | 510 mm     | 545 mm     | 525 mm     | -                   |
| Druckfestigkeit D1            | 24,3 MPa   | 18,1 MPa   | 13,3 MPa   | 18,6 MPa            |
| Druckfestigkeit <sub>D7</sub> | 47,3 MPa   | 40,4 MPa   | 33,6 MPa   | 49,9 MPa            |
| Druckfestigkeit D28           | 58,0 MPa   | 43,2 MPa   | 49,0 MPa   | 58,9 MPa            |





#### Zusammenfassung


- ✓ CEM II/C-M(S-LL) 42,5 N eignet sich besonders gut für Anwendungen, bei denen
  - eine Minimierung der Betonschwindung,
  - eine moderate Druckfestigkeitsentwicklung und
  - eine langsame Wärmeentwicklung während der Hydratation gewünscht sind.
- ✓ Geringere Porosität und Versinterungsneigung des Betons: Aufgrund des hohen Gehalts an mineralischen Zusatzstoffen weist der Beton eine niedrigere Kapillarporosität und damit eine höhere Dauerhaftigkeit auf.

Darüber hinaus ist Zement aufgrund seines **geringen CO<sub>2</sub>-Fußabdrucks** die ideale Wahl für die Herstellung von **nachhaltigem Beton**.

Diese Eigenschaften machen ihn zur idealen Wahl für die Herstellung anspruchsvoller Infrastrukturbauten.



# Danke für die Aufmerksamkeit!

